Solids (MCQ Only)

Q1.

A deforming force is applied to a sample of material.

Which row of the table shows the axes of a graph for which the gradient is stiffness *k*?

	y-axis	x-axis
□ A	extension	force
ВВ	force	length
	stress	strain
■ D	strain	length

(Total for question = 1 mark)

Q2.

A sample of steel in the form of a wire is subjected to an increasing load.

Which of the following is the best description of the elastic limit of the steel?

- A The stress at which the steel undergoes an increase in strain with no increase in stress.
- B The stress beyond which the stress and strain are no longer proportional.
- ☐ C The stress beyond which the steel becomes permanently deformed.
- D The stress at which the steel breaks.

Q3.

When a force F is applied to a spring with stiffness k, the elastic potential energy stored is E.

What is the elastic potential energy stored when a force 2*F* is applied to a spring with stiffness 2*k*?

- \triangle A $\frac{E}{2}$
- \square B E
- \square **D** 8E

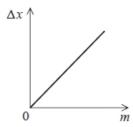
(Total for question = 1 mark)

Q4.

A horizontal force *F* is applied to a horizontal spring, fixed at one end.

The stiffness of the spring is *k* and the elastic strain energy stored is *E*.

A second, identical spring is added and the same force is applied to the combination of springs, as shown.


What is the elastic strain energy stored for the combination of springs?

- \triangle A $\frac{E}{2}$
- \mathbf{B} \mathbf{E}
- \square **D** 8E

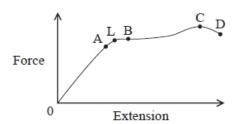
Q5.

A spring is hung vertically and masses are added to the lower end.

The graph shows how the extension Δx of the spring varies with the mass m added.

The work done in extending the spring can be expressed as

(1)


(1)

- \triangle A $mg\Delta x$
- \square B $\frac{mg}{\Delta x}$
- \square C $\frac{1}{2}mg\Delta x$
- \square **D** $\frac{mg}{2\Delta x}$

(Total for question = 1 mark)

Q6.

The diagram shows a force-extension graph for a wire.

L is the elastic limit.

Which point represents the yield point?

BC

D

Q7.

The Hooke's law equation is:

$$\Delta F = k \Delta x$$

Which of the following gives the base units of k?

- \square A kg s⁻²
- \square **B** kg m s⁻²
- C Nm
- \square **D** N m⁻¹

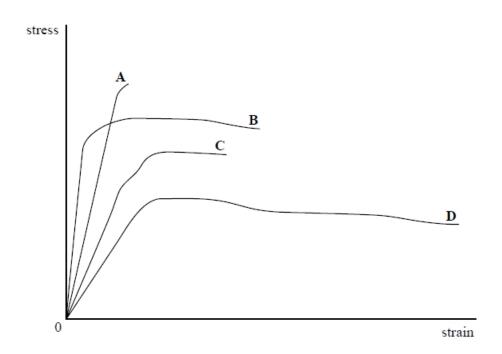
(Total for question = 1 mark)

Q8.

A mass is supported by a single spring as shown.

The strain energy stored by the spring is *E*.

The mass is then supported by two springs, each identical to the first spring, as shown.



What is the total strain energy stored with two springs arranged in this way?

- A ¼ E
- B ½ E
- □ D 2E

(Total for question = 1 mark)

Q9.

Which of the materials represented in the graph has the largest value of the Young Modulus?

- A
- В
- D

Q10.

In an investigation to determine the Young modulus of steel in the form of a wire, a student plots a straight line graph. The Young modulus is numerically equal to the gradient of the graph.

What quantities did the student plot on each axis on the graph?

		y-axis	x-axis
×	A	strain	stress
×	В	stress	strain
×	C	1 strain	stress
×	D	1 stress	strain

(Total for question = 1 mark)

Q11.

The following measurements were made to determine the Young modulus of a metal bar.

original length of bar = 0.50 marea of cross section = $4.5 \times 10^{-4} \text{ m}^2$ tensile force applied to bar = $36\ 000\ \text{N}$ extension of bar = $2.0 \times 10^{-4} \text{ m}$

Which of the following gives the Young modulus of the metal?

$$\square$$
 C $\frac{36000 \times 2.0 \times 10^{-4}}{4.5 \times 10^{-4} \times 0.50}$

$$\square \quad \mathbf{D} \quad \frac{4.5 \times 10^{-4} \times 0.50}{36000 \times 2.0 \times 10^{-4}}$$

Q12.

The Young Modulus of a material can be expressed by the formula $E = \frac{Fx}{A\Delta x}$.

The derivation of this formula is

$$E = \frac{\sigma}{\varepsilon}$$
So $E = \frac{Fx}{A\Delta x}$

Which of the following completes the second line of the derivation?

- $\Box \quad \mathbf{A} \qquad \frac{\frac{\lambda}{\Delta x}}{\frac{F}{A}}$
- $\frac{\Delta x}{x}$
- \square C $\frac{A}{\Delta x}$
 - $\frac{F}{A}$
- \square **D** $\frac{x}{\Delta x}$

Mark Scheme - Solids (MCQ Only)

Q1.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B because the gradient of this graph is change in length + change in force and the change in length is the		1
	same as the change in extension, so the gradient is equal to stiffness		
	A is not correct because a graph of extension against force will have a gradient of $1/k$		
	C is not correct because a graph of stress against strain will have a		
	gradient equal to the Young modulus for the sample D is not correct because a graph of strain versus length is equivalent		
	to a graph of extension versus (length)2, so it does not have a		
	gradient equal to k		

Q2.

Question	Answer	Mark
Number		
	C The stress beyond which the steel becomes permanently deformed.	1
	Incorrect Answers:	
	A - The stress at which the steel undergoes an increase in strain with no increase in	
	stress.	
	B – The stress beyond which the stress and strain are no longer proportional.	
	D – The stress at which the steel breaks.	

Q3.

Question Number	Acceptable answer	Additional guidance	Mark
	C	The only correct answer is C because for the original spring $F = kx$ so $x = F/k$,	
		so $E = \frac{1}{2} Fx = \frac{1}{2} F^2/k$. For $2F$ and $2k$ the epe is $E \times 2^2/2 = 2E$	
		A is not correct because it is $E/2$	
		B is not correct because it is E	
		A is not correct because it is 8E	1

Q4.

Question Number	Angwar	Mark
	The only correct answer is C because each spring is extended by the same amount so each stores the same energy so the total is doubled	1

Q5.

Question	Answer	Mark
Number		
	$C = \frac{1}{2}mg\Delta x$	1
	Incorrect Answers:	
	A – no factor of $\frac{1}{2}$	
	B – incorrect equation and no factor of $\frac{1}{2}$	
	D – incorrect equation	

Q6.

Question Number	Acceptable answers	Additional guidance	Mark
	В		1

Q7.

Question	Answer	Mark
Number		
	A kg s ⁻²	1
	Incorrect Answers:	
	B – base units for N	
	C – incorrect units and not base units	
	D – correct units but not base units	

Q8.

Question Number	Acceptable answer	Additional guidance	Mark
	В	The only correct answer is B : for each spring, $\frac{1}{2}$ force, so $\frac{1}{2}$ extension, so $\frac{1}{2}$ Fx gives $\frac{1}{4}$ E, so total is $\frac{1}{2}$ E	1
		A is not correct because it is the energy for one spring with this extension C is not correct because it only applies the factor of ½ once D is not correct because it is the energy for two springs, each with the original extension	

Q9.

Question Number	Acceptable Answers	Additional Guidance	Mark
	В		1

Q10.

Question Number	Answer	Mark
	B stress v strain	1
	Incorrect Answers:	
	A – gradient ≠ Young modulus	
	C – gradient ≠ Young modulus	
	\mathbf{D} – gradient \neq Young modulus	

Q11.

Question	Answer	Mark
Number		
	$\mathbf{A} = \frac{36000 \times 0.5}{4.5 \times 10^{-4} \times 2.0 \times 10^{-4}}$	1
	Incorrect Answers:	
	B – incorrect arrangement of equation	
	C- incorrect arrangement of equation	
	D – incorrect arrangement of equation	

Q12.

Question	Answer	Mark
Number		
	$C \frac{F_{/A}}{\Delta x_{/x}}$ (stress/strain)	1
	Incorrect Answers:	
	A incorrect arrangement	
	B incorrect arrangement	
	D incorrect arrangement for strain	